

HyBNN: Quantifying and Optimizing Hardware Efficiency of Binary Neural Networks

Geng Yang, Jie Lei, Zhenman Fang, Yunsong li, Jiaqing Zhang, Weiying Xie

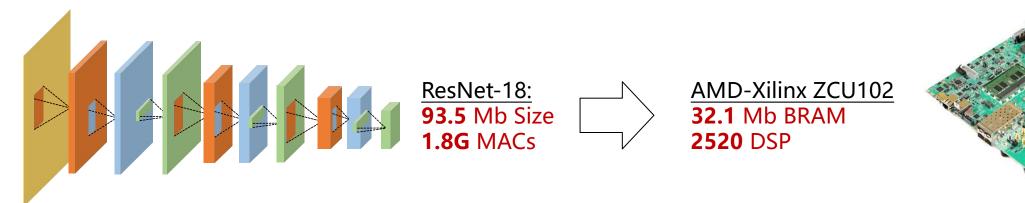
State Key Lab of Integrated Services Networks Xidian University, China

FPT 2023

Deep Learning on the Edge.....

- ✓ Increasing demand for DNN depolyment on edge devices
 - Autonomous vehicles
 - Mobile phones
 - Smart cities

- ✓ Stringent deployment challenge on Edge
 - Deeper and more sophisticated models
 - Limited memory and computing resource



Promising Binary Neural Network

- ✓ Various model compression for edge cases
 - Network pruning
 - Knowledge disitillation
 - Compact network
 - Low-bit quantization
- ✓ Promising Binary Neural Network
 - Extreme data precision (1W1A)
 - Smaller memory footprint
 - Cheaper XNOR-POPCNT MAC

$$a_{B} = \varphi \left(2 \cdot PopCnt \left(\sim \left(w_{B}^{i} \wedge d_{B}^{i} \right) \right) - K \cdot N \right)$$

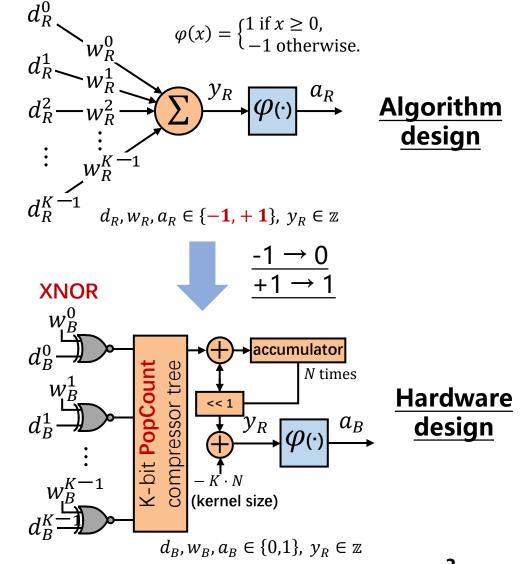
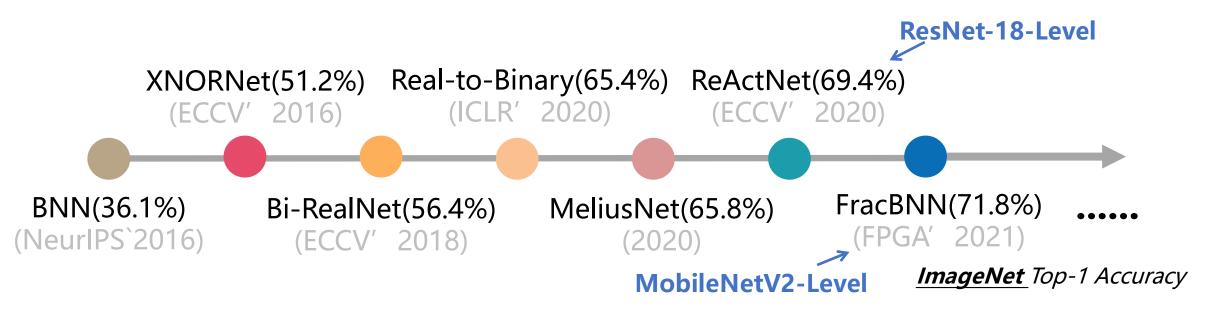


Image in Barry de Bruin.,"Deep Neural Network optimization: Binary Neural Networks"

Evolution of Binary Neural Networks



However

- ✓ Satisfactory accuracy gains come at the cost of
 - Various auxiliary floating-point(AFP) components
 - Increased model size

Main Contributions of This Paper

Our goal is to quantify such hardware inefficiency in SOTA BNNs and further optimize the BNN hardware performance with negligible accuracy loss

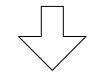
Challenge #1

Various Auxiliary Floatingpoint(AFP) Components

Solution #1

Algorithm/Hardware Component Fusion: **FuseBNN** Challenge #2

Increased Model Size



Solution #2

Hardware-Friendly Hybrid BNN HyBNN

Outline of Today's Presentation

• Our Case Study

- ✓ BaseBNN
- ✓ BNN hardware accelerator

• Two Challenges

- ✓ Various floating-point component
- ✓ Increase model size

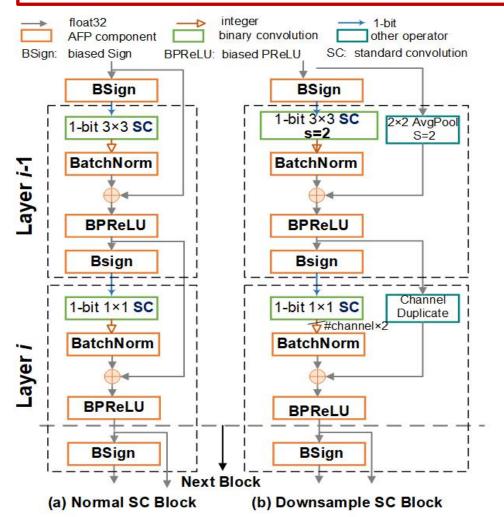
• Two Solutions

- ✓ Algorithm/Hardware Component Fusion: FuseBNN
- ✓ Hardware-Friendly Hybrid BNN: HyBNN

• Experimental Results

BNN Case Study: Ship Detection on SAR Imagery

Our goal is to quantify such hardware inefficiency in SOTA BNNs and further optimize the BNN hardware performance with negligible accuracy loss



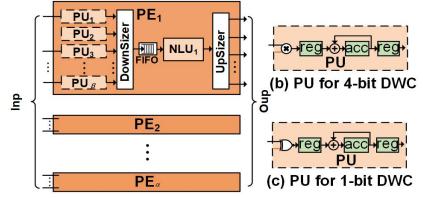
✓ Our starting-point:

- Edge task:
 - Ship detection in SAR Imagery
- Representive Baseline BNN
 - ReActNet^[1]-adapted BaseBNN
 - High detection accuracy (**AP: 94.9%**)

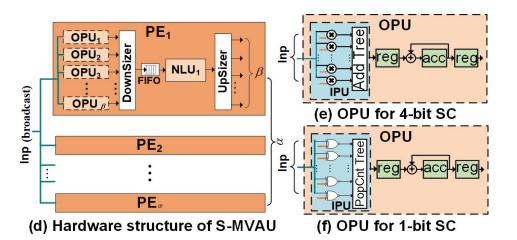
[1] Liu et al., "Reactnet: Towards precise binary neural network with generalized activation function," ECCV2020

BNN Case Study: Ship Detection on SAR Imagery

Our goal is to quantify such hardware inefficiency in SOTA BNNs and further optimize the BNN hardware performance with negligible accuracy loss



(a) Hardware structure of D-MVAU



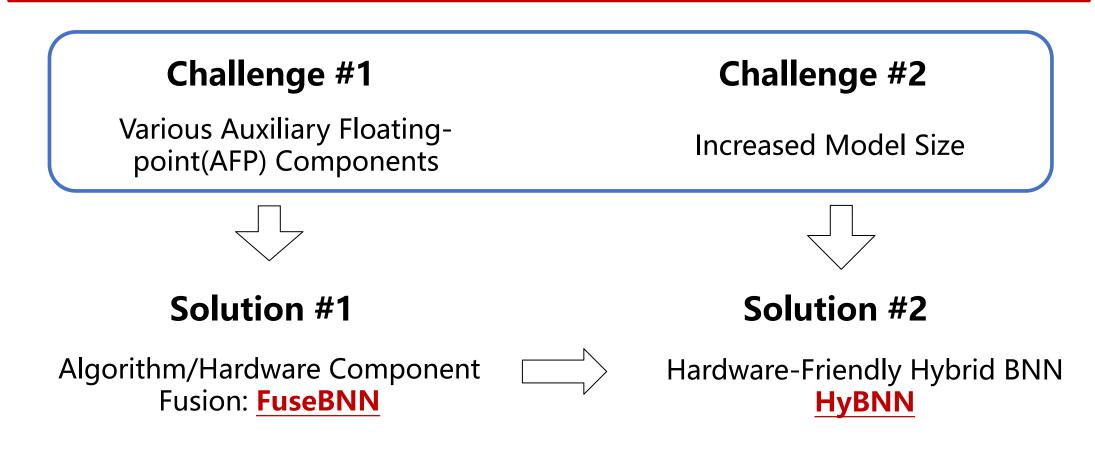
✓ Our starting-point:

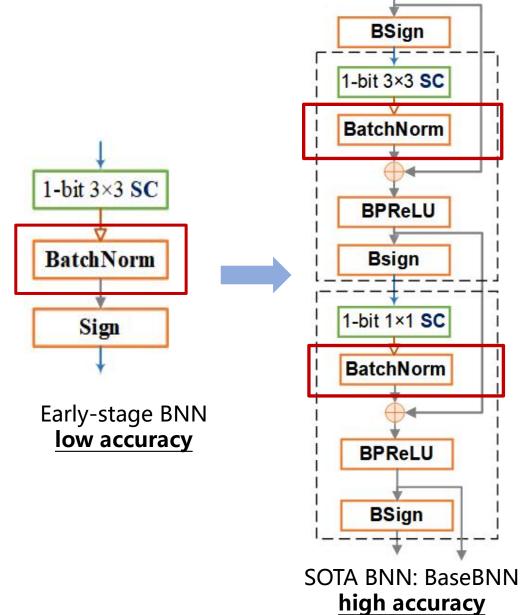
- Hardware Architecture
 - All-on-chip dataflow accelerator^{[2][3]}
 - 4-bit accelerators for comparision
- Hardware platform
 - AMD-Xilinx ZCU102

[2] Blott et al. "FINN-R: An end-to-end deep-learning framework for fast exploration of quantized neural networks." ACM TRETS 2018
 [3] Yang et al., "Algorithm/Hardware Codesign for Real-Time On-Satellite CNN-Based Ship Detection in SAR Imagery," IEEE TGRS2022 (open-sourced on Github)

Main Contributions of this paper

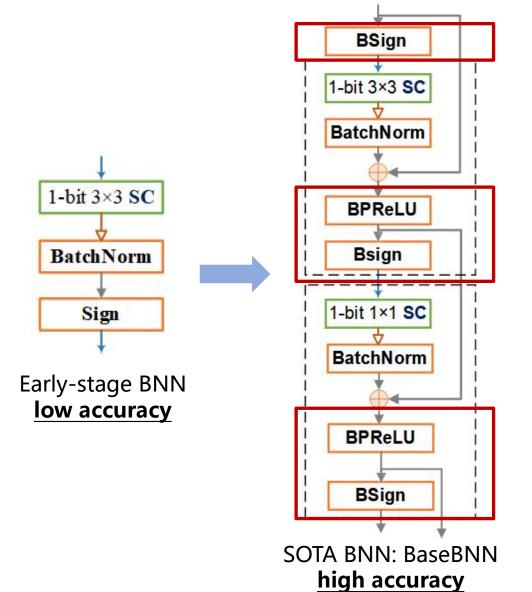
Our goal is to quantify such hardware inefficiency in SOTA BNNs and further optimize the BNN hardware performance with negligible accuracy loss





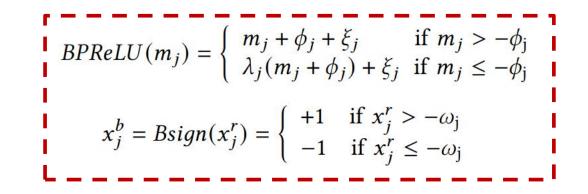
✓ BatchNorm

$$y_j = k_j x_j + b_j$$
$$k_j = \frac{\gamma_j}{\sqrt{||\sigma^2_j + \varepsilon||}}, \quad b_j = \beta_j - \frac{\gamma_j \mu_j}{\sqrt{||\sigma^2_j + \varepsilon||}}$$

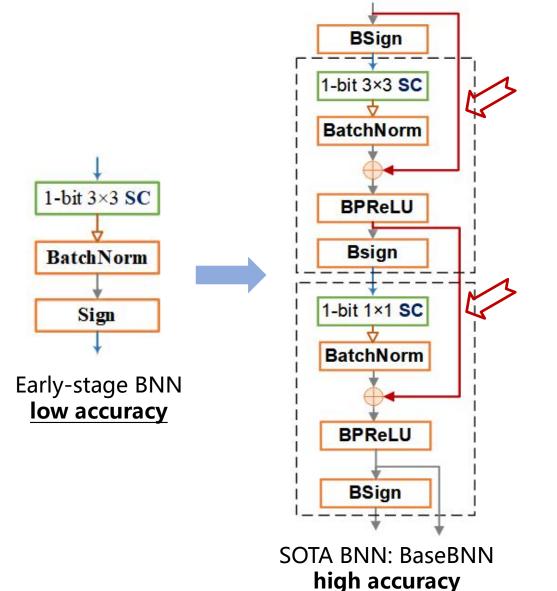


✓ BatchNorm

✓ Biased PReLU/Biased Sign^[1]



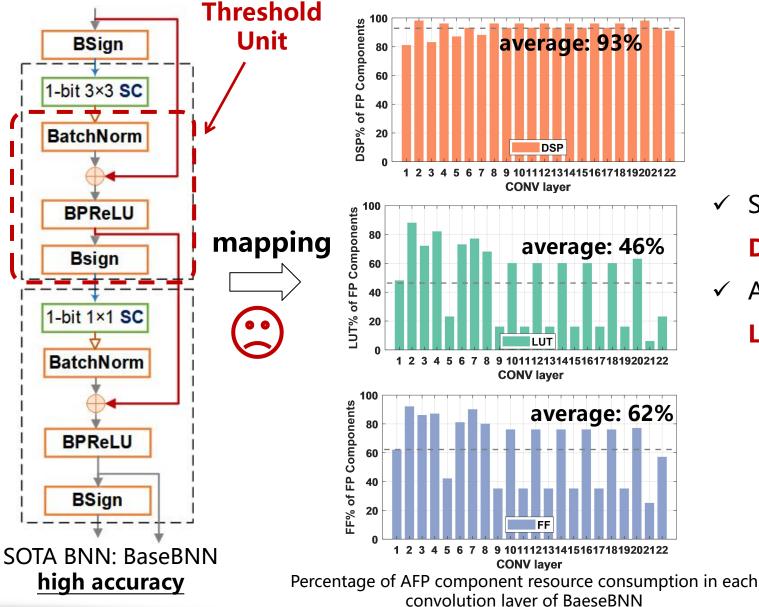
[1] Liu et al., "Reactnet: Towards precise binary neural network with generalized activation function," ECCV2020



- ✓ BatchNorm
- ✓ Biased PReLU/Biased Sign^[1]
- ✓ Shortcut branch

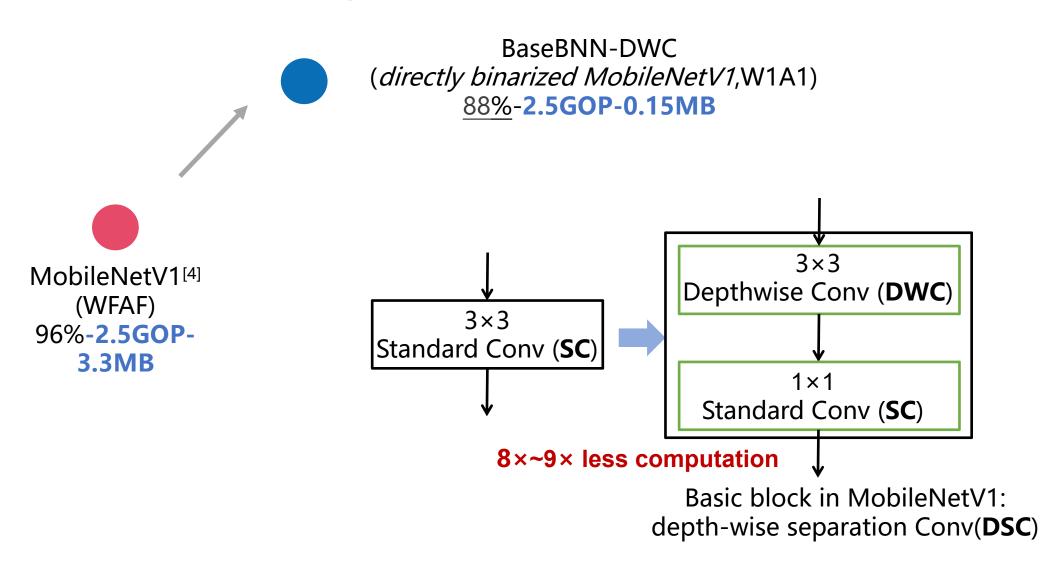
(widely used for accuracy improvement)

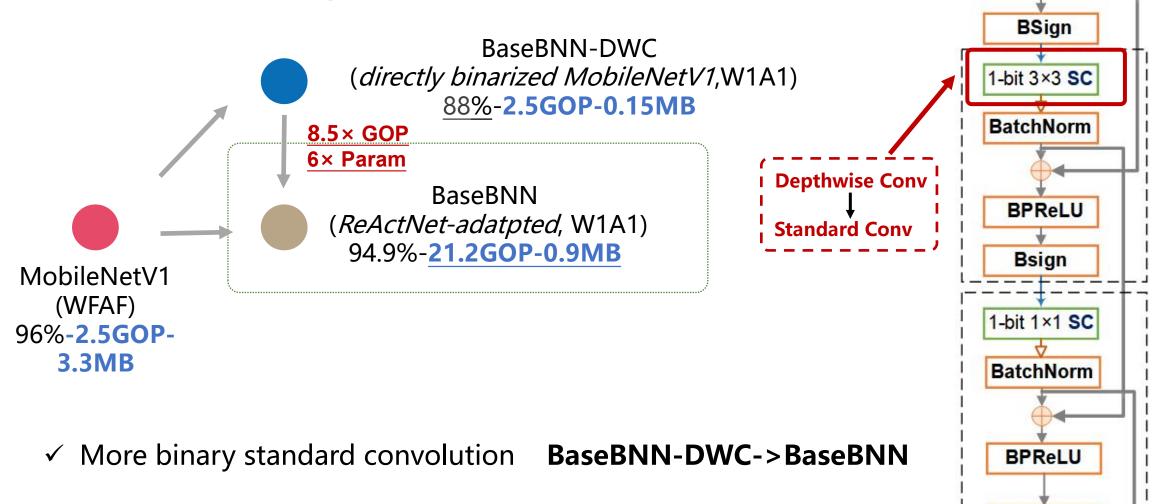
[1] Liu et al., "Reactnet: Towards precise binary neural network with generalized activation function," ECCV2020



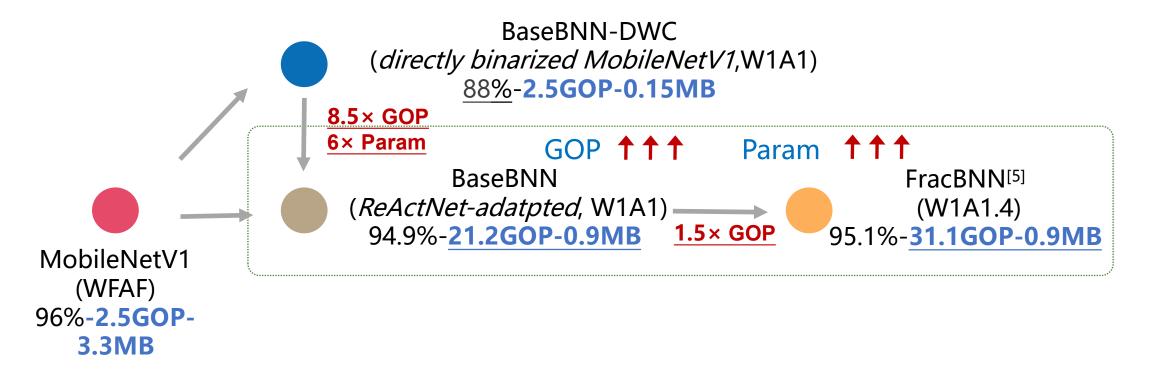
Single threshold unit consumes 5 DSP, 820 FFs and 517 LUTs An average of 93% DSPs, 46%

LUTs and 62% FFs





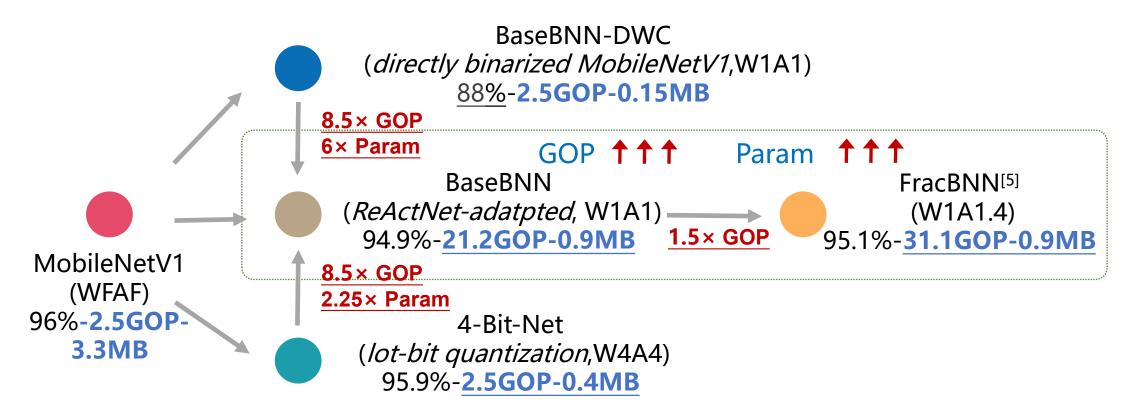
BSign



✓ More binary standard convolution

BaseBNN-DWC->BaseBNN

✓ More complex fractional convolution BaseBNN->FracBNN^[2]



- ✓ More binary standard convolution
- ✓ More complex fractional convolution
- ✓ losing advantage over 4-Bit-Net

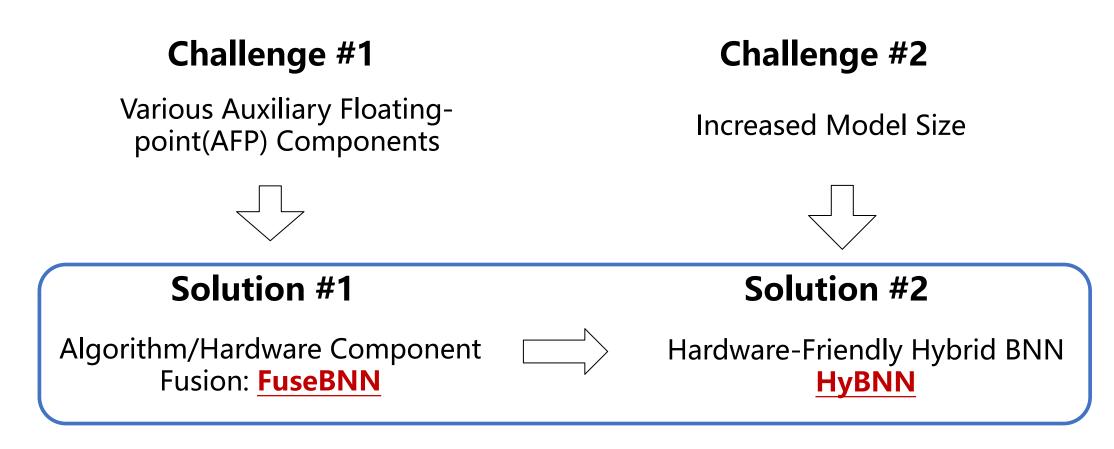
BaseBNN-DWC->BaseBNN

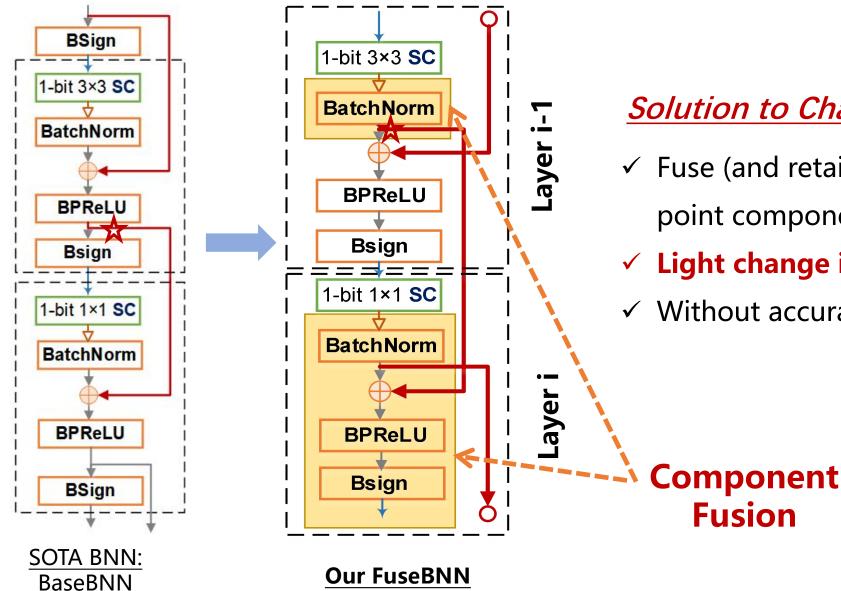
BaseBNN->FracBNN^[2]

BaseBNN->4-Bit-Net

Main Contributions of this paper

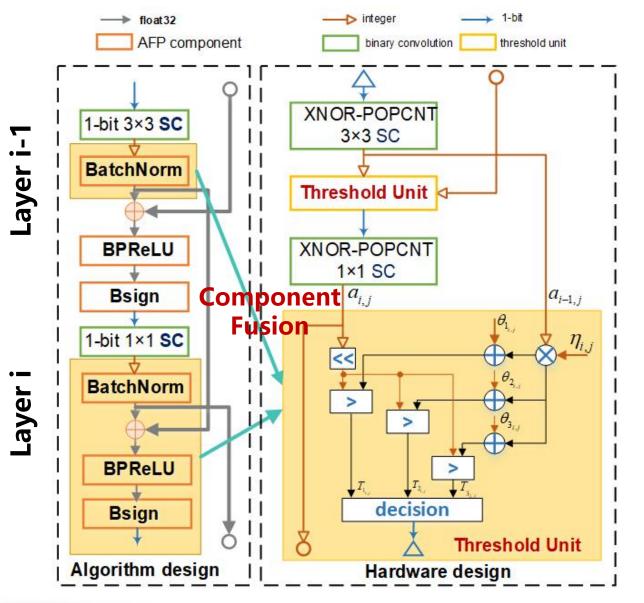
Our goal is to quantify such hardware inefficiency in SOTA BNNs and further optimize the BNN hardware performance with negligible accuracy loss





Solution to Challenge #1

- ✓ Fuse (and retain) all axuliary floatingpoint components
- ✓ Light change in AFP shortcut branch
- ✓ Without accuracy loss



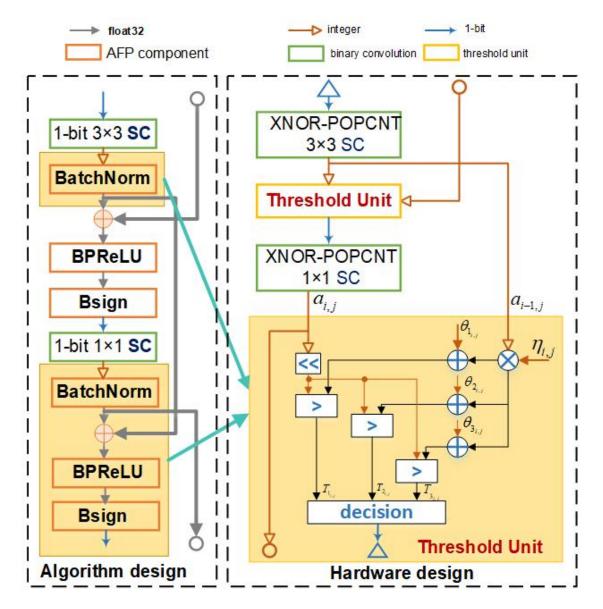
Solution to Challenge #1

- ✓ Single fused threshold unit
 - Pre-computed constant coefficients
 - 1 multiplication, 3 additions and several logical decision

$$o_{i,j} = \begin{cases} 1 & \text{if } ((\text{cond1}\&\text{cond2}) \mid (\text{cond3}\&\text{cond4})) \\ 0 & \text{otherwise} \end{cases}$$

$$\begin{array}{ll} \mbox{cond1}: & a_{i,j} > \eta_{i,j} a_{i-1,j} + \theta_{1_{i,j}} \\ \mbox{cond2}: & a_{i,j} > \eta_{i,j} a_{i-1,j} + \theta_{2_{i,j}} \\ \mbox{cond3}: & a_{i,j} \le \eta_{i,j} a_{i-1,j} + \theta_{1_{i,j}} \\ \mbox{cond4}: & a_{i,j} > \eta_{i,j} a_{i-1,j} + \theta_{3_{i,j}} \end{array}$$

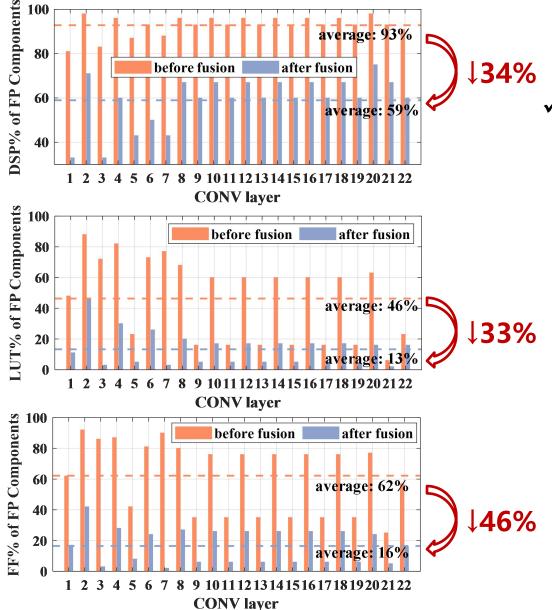
20



Solution to Challenge #1

- ✓ Single fused threshold unit
 - Pre-computed constant coefficients
 - 1 multiplication, 3 additions and several logical decision
 - 5×DSP, 20.5×FF, 6.5×LUT reduction

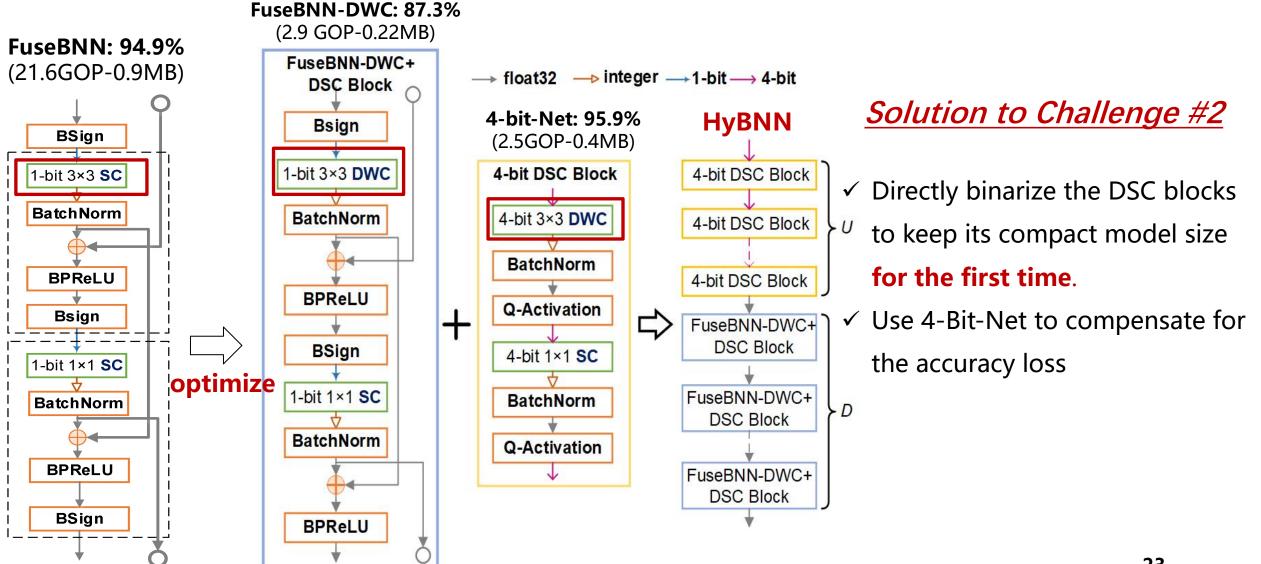
Threshold Unit	DSP	FF	LUT	
Before fusion	5	820	517	
After fusion	1	40	80	Į



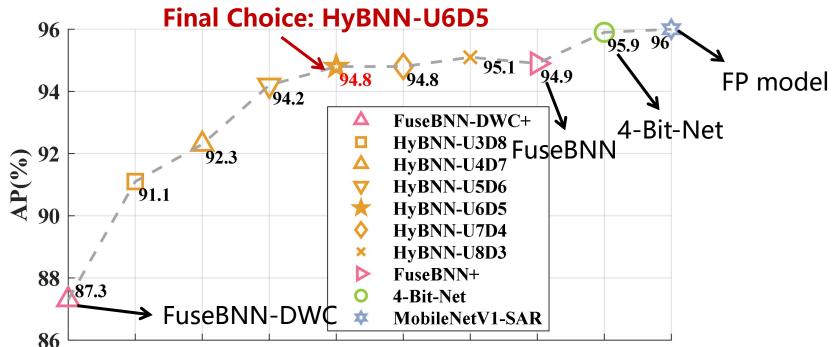
Solution to Challenge #1

- Single fused threshold unit
 - Pre-computed constant coefficients
 - 1 multiplication, 3 additions and several logical decision
- ✓ An average reduction of 34% DSPs, 33%
 LUTs and 46% FFs

HyBNN: Hardware-Friendly Hybrid BNN



Experimental Result of HyBNN Accuracy



Accuracy of different U and D settings for HyBNN on SAR imagery

✓ HyBNN with U-D setting

- Trade off between accuacy and resource overhead
- HyBNN-U6D5 (94.8 AP)

Experimental Result for SAR ship detection

Model	AP	GOP	Param	Resource Cost			Peak	FPS	FPS	FPS	
	(%)		(MB)	BRAM	DSP	FF	LUT	FPS	/BRAM	/DSP	/kLUTs
BaseBNN	94.9	21.2	0.9	1,032.5 (113.2%)	1,146 (45.5%)	472,534 (86.2%)	399,544 (145.8%)	failed	-	_	-
FuseBNN+	94.9	21.6	0.9	810 (88.8%)	162 (6.4%)	168,688 (30.8%)	122,129 (44.6%)	90	0.11	0.56	0.74
4-Bit-Net (250MHz)	95.9	2.5	0.4	466 (51.1%)	1,997 (79.2%)	367,112 (67.0%)	192,157 (70.1%)	230	0.49	0.12	1.20

Performance Report on AMD-Xilinx ZCU102 FPGA with 300MHz (Input size: 416×416)

- ✓ FuseBNN+: lower DSP, FF, LUT usage compared to BaseBNN
- ✓ However, increased model size still make FuseBNN lose advantage over 4-Bit-Net

Experimental Result for SAR ship detection

Model	AP	GOP	Param	Resource Cost			Peak	FPS	FPS	FPS	
	(%)		(MB)	BRAM	DSP	FF	LUT	FPS	/BRAM	/DSP	/kLUTs
BaseBNN	94.9	21.2	0.9	1,032.5 (113.2%)	1,146 (45.5%)	472,534 (86.2%)	399,544 (145.8%)	failed	-	-	-
FuseBNN+	94.9	21.6	0.9	810 (88.8%)	162 (6.4%)	168,688 (30.8%)	122,129 (44.6%)	90	0.11	0.56	0.74
4-Bit-Net (250MHz)	95.9	2.5	0.4	466 (51.1%)	1,997 (79.2%)	367,112 (67.0%)	192,157 (70.1%)	230	0.49	0.12	1.20
HyBNN	94.8	2.5	0.19	555 (60.9%)	1,662 (66.0%)	276,583 (50.5%)	152,687 (55.7%)	615	1.11	0.37	4.03

Performance Report on AMD-Xilinx ZCU102 FPGA with 300MHz (Input size: 416×416)

✓ HyBNN: higher FPS/BRAM(2.3×), FPS/DSP(3.1×), FPS/kLUTs(3.4×) efficiency over 4-Bit-Net

Generalization Study for CIFAR10

Model	Top-1	^{op} ' GOP		Param Resource Cost					FPS	FPS	FPS
	(%)		(MB)	BRAM	DSP	FF	LUT	FPS	/BRAM	/DSP	/kLUTs
HyBNN (300MHz)	89.8	0.03	0.07	94.5 (43.8%)	205 (56.9%)	99,074 (70.2%)	51,927 (73.6%)	4302	45.5	21	82.8
FracBNN ^[5] (250MHz)	89.1	0.07	0.03	212 (98.1%)	126 (35%)	39,618 (28.1%)	51,444 (72.9%)	2806	13.2	22.3	54.5

Performance Comparision to SOTA FracBNN on AMD-Xilinx Ultra96-V2

- ✓ GOP reduction $(2.3 \times)$
- ✓ HyBNN achieve better accuracy (0.7%), higher higher FPS (1.5×), higher FPS/BRAM(3.4×), FPS/kLUTs(1.5×) efficiency over SOTA FracBNN

Key Take-Aways

- A quantitative evaluation of hardware inefficiency caused by AFP components and increased model size in SOTA BNNs
- ✓ **FuseBNN**, a novel algorithm/hardware co-design to fuse AFP operators in BNNs
- ✓ <u>HyBNN</u>, the first hybrid BNN and 4-Bit-Net design that directly binarizes (and quantizes) the original DSC blocks
- Promising experimental results for <u>ship detection on SAR imagery</u> and <u>image</u>
 <u>classification on CIFAR-10</u> on embedded FPGA
- ✓ Future work: We plan to explore more SOTA BNNs, datasets, and FPGAs.

历安意子科技大学 **XIDIAN UNIVERSITY**

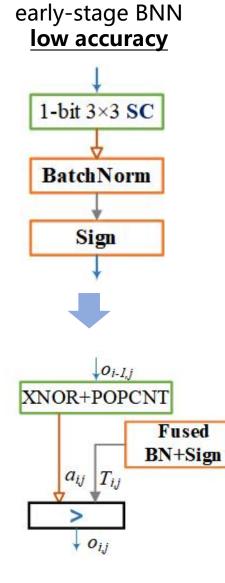
Thank You! Questions?

Michaela 陕西西安

Email: gengyang@stu.xidian.edu.cn

扫一扫上面的二维码图案,加我为朋友

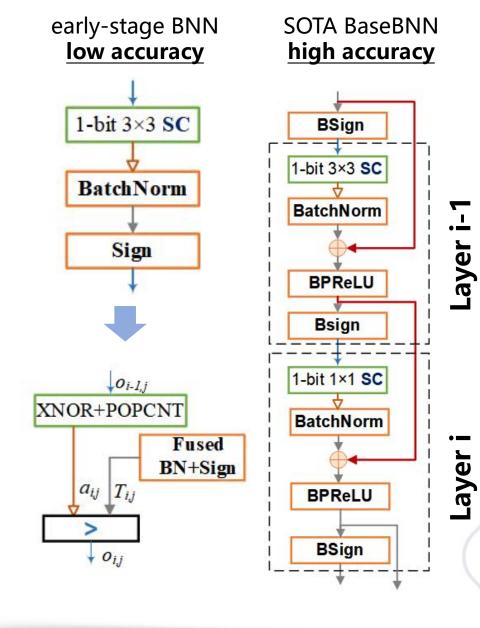
HyBNN: Quantifying and Optimizing Hardware Efficiency of Binary Neural Networks, Geng Yang, Jie Lei, Zhenman Fang, Yunsong li, Jiaqing Zhang, Weiying Xie 29



Solution to Challenge #1

- ✓ Early-stage BNN
 - cheap fusion threshold unit

$$o_{i,j} = \begin{cases} 1 & if \ a_{i,j} > T_{i,j} \\ 0 & otherwise \end{cases}, \quad T_{i,j} = -\frac{b_{i,j}}{2k_{i,j}} + \frac{N_i}{2}$$



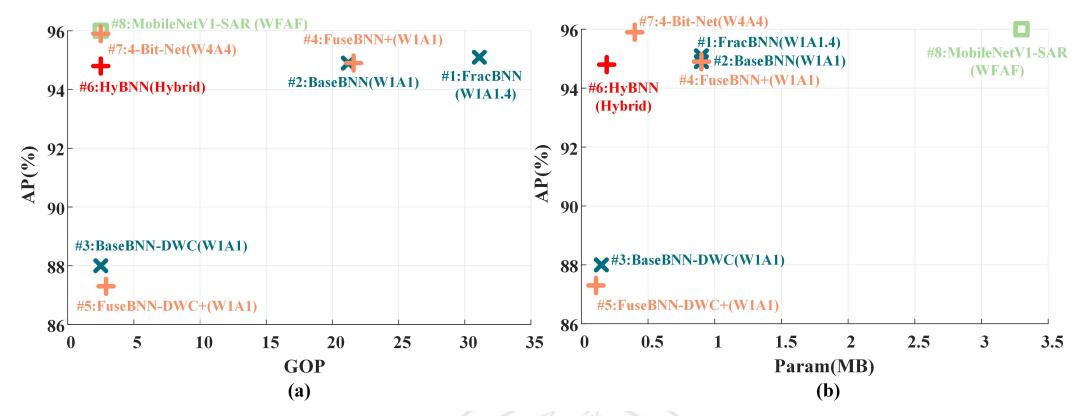
Solution to Challenge #1

- ✓ Early-stage BNN
 - cheap fusion threshold unit

$$o_{i,j} = \begin{cases} 1 & if \ a_{i,j} > T_{i,j} \\ 0 & otherwise \end{cases}, \quad T_{i,j} = -\frac{b_{i,j}}{2k_{i,j}} + \frac{N_i}{2}$$

 ✓ the introduction of floating-point shortcut branch break simple fusion strategy

Model Size Analysis



Accuracy (AP), Operation (GOP, giga multiply-accumulate operations, not considering bit-width) and parameter size (MB) comparison for different models. WFAF denotes 32-bit floating-point weight and activation

Model Configuration

Table 1. Configuration of backbone network MobileNetV1-SAR. Each row describes a sequence of n (last column) repeated identical layers. The first column shows the input feature map size for each operator (second column). c and s denote the number of output channels and stride of each operator.

Input	Operator		с	S	n	
416×416×1	3×3 SC		32	2	1	
208×208×32	DSC	3×3 DWC	32	1	1	
200×200×32	DSC	1×1 SC	64	1		
208×208×64	DSC	3×3 DWC	64	2	1	
200×200×04	DSC	1×1 SC	128	1	1	
104×104×128	DSC	3×3 DWC	128	1	1	
104×104×128	DSC	1×1 SC	128	1		
104×104×128	DSC	3×3 DWC	128	2	1	
104×104×120	Doc	1×1 SC	256	1		
52×52×256	DSC	3×3 DWC	256	1	- 5	
32×32×230	DSC	1×1 SC	256	1	5	
52×52×256	DSC	3×3 DWC	256	1	1	
32×32×230	DSC	1×1 SC	512	1	1	
E0×E0×E10	DSC	3×3 DWC	512	1	1	
52×52×512	DSC	1×1 SC	512	1		
52×52×512		I×1 SC	25	1	1	
52×52×25	detector		_	-	- 1	

Ship detection for SAR Imagery

Table 5. Configuration of backbone network MobileNetV1-CIFAR-10.

Input	Operator	С	S	n	
32×32×3	SC 3×3	32	1	<u></u>	
20,220,220	DWC 3×3	32	1	1	
32×32×32	SC 1×1	64	1	1	
32×32×64	DWC 3×3	64	2	1	
32×32×04	SC 1×1	128	1	1	
16×16×128	DWC 3×3	128	1	2	
10×10×120	SC 1×1	128	1	2	
16×16×128	DWC 3×3	128	2	1	
10×10×120	SC 1×1	256	1		
8202057	DWC 3×3	256	1	2	
8×8×256	SC 1×1	256	1	3	
8×8×256	Max_Pool	256	-	3	
1×1×256	FC	10	-	-	
1×1×10	Softmax	-	-		

Image Classification for CIFAR10

Experimental Result for CIFAR10

Table 6. Operation number (GOP, *not considering bit-width*), parameter size (MB) and accuracy comparison for image classification on CIFAR-10.

Model	Param (MB)	GOP	Top-1 (%)
BaseBNN	0.22	0.25	89.8
FuseBNN	0.32	0.25	90
FuseBNN-DWC+	0.04		77.5
HyBNN-U5D3	0.07	0.03	89.8
4-Bit-Net	0.14		90.1
FracBNN[30]	0.03	0.07	89.1

