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Deep Learning on the Edge......

ü Increasing demand for DNN depolyment on edge devices

• Autonomous vehicles

• Mobile phones

• Smart cities

ü Stringent deployment challenge on Edge

• Deeper and more sophisticated models

• Limited memory and computing resource

AMD-Xilinx ZCU102
32.1 Mb BRAM
2520 DSP

ResNet-18:
93.5 Mb Size
1.8G MACs 
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Promising Binary Neural Network

ü Various model compression for edge cases

• Network pruning

• Knowledge disitillation

• Compact network

• Low-bit quantization

ü Promising Binary Neural Network

• Extreme data precision (1W1A)

• Smaller memory footprint

• Cheaper XNOR-POPCNT MAC
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Evolution of  Binary Neural Networks 

BNN(36.1%)
(NeurIPS`2016)

XNORNet(51.2%)
(ECCV’2016)

ImageNet Top-1 Accuracy

Bi-RealNet(56.4%)
(ECCV’2018)

ReActNet(69.4%)
(ECCV’2020)

MeliusNet(65.8%)
(2020)

FracBNN(71.8%)
(FPGA’2021)

Real-to-Binary(65.4%)
(ICLR’2020)

ü Satisfactory accuracy gains come at the cost of 

• Various auxiliary floating-point(AFP) components 

• Increased model size

However ......

ResNet-18-Level 

MobileNetV2-Level 

......
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Main Contributions of This Paper

Our goal is  to quantify such hardware inefficiency in SOTA BNNs and further 
optimize the BNN hardware performance with negligible accuracy loss

Various Auxiliary Floating-
point(AFP) Components

Challenge #1 Challenge #2 

Increased Model Size

Hardware-Friendly Hybrid BNN  
HyBNN

Solution #2Solution #1

Algorithm/Hardware Component 
Fusion: FuseBNN
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Outline of Today’s Presentation

l Our Case Study 
ü BaseBNN

ü BNN hardware accelerator

l Two Challenges
ü Various floating-point component

ü Increase model size

l Two Solutions
ü Algorithm/Hardware Component Fusion: FuseBNN

ü Hardware-Friendly Hybrid BNN: HyBNN

l Experimental Results
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BNN Case Study: Ship Detection on SAR Imagery
Our goal is  to quantify such hardware inefficiency in SOTA BNNs and further 

optimize the BNN hardware performance with negligible accuracy loss

[1] Liu et al.,“Reactnet: Towards precise binary neural network with generalized activation function,” ECCV2020

ü Our starting-point:

• Edge task: 

• Ship detection in SAR Imagery

• Representive Baseline BNN

• ReActNet[1]-adapted BaseBNN

• High detection accuracy (AP: 94.9%)
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BNN Case Study: Ship Detection on SAR Imagery
Our goal is  to quantify such hardware inefficiency in SOTA BNNs and further 

optimize the BNN hardware performance with negligible accuracy loss

[2] Blott et al. "FINN-R: An end-to-end deep-learning framework for fast exploration of quantized neural networks." ACM TRETS 2018

ü Our starting-point:

• Hardware Architecture 

• All-on-chip dataflow accelerator[2][3]

• 4-bit accelerators for comparision

• Hardware platform

• AMD-Xilinx ZCU102

[3] Yang et al.,“Algorithm/Hardware Codesign for Real-Time On-Satellite CNN-Based Ship Detection in SAR Imagery,” IEEE TGRS2022 (open-sourced on Github)
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Main Contributions of this paper

Our goal is  to quantify such hardware inefficiency in SOTA BNNs and further 
optimize the BNN hardware performance with negligible accuracy loss

Various Auxiliary Floating-
point(AFP) Components

Challenge #1 Challenge #2 

Increased Model Size

Hardware-Friendly Hybrid BNN  
HyBNN

Solution #2Solution #1

Algorithm/Hardware Component 
Fusion: FuseBNN

9



ü BatchNorm

Early-stage BNN
low accuracy

Challenge #1: Auxiliary Floating-point Components

SOTA BNN: BaseBNN
high accuracy 10



ü BatchNorm

ü Biased PReLU/Biased Sign[1]

Early-stage BNN
low accuracy

[1] Liu et al.,“Reactnet: Towards precise binary neural network with generalized activation function,” ECCV2020

Challenge #1: Auxiliary Floating-point Components

SOTA BNN: BaseBNN
high accuracy
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ü BatchNorm

ü Biased PReLU/Biased Sign[1]

ü Shortcut branch 

 (widely used for accuracy improvement)

Early-stage BNN
low accuracy

[1] Liu et al.,“Reactnet: Towards precise binary neural network with generalized activation function,” ECCV2020

Challenge #1: Auxiliary Floating-point Components

SOTA BNN: BaseBNN
high accuracy
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Challenge #1: Auxiliary Floating-point Components
Threshold 

Unit

ü Single threshold unit consumes 5 

DSP, 820 FFs and 517 LUTs

ü An average of 93% DSPs, 46% 

LUTs and 62% FFs 

average: 93%

average: 46%

average: 62%

mapping

Percentage of AFP component resource consumption in each 
convolution layer of BaeseBNN

SOTA BNN: BaseBNN
high accuracy 13



Challenge #2: Increased Model Size

MobileNetV1[4]

(WFAF)
96%-2.5GOP-

3.3MB

BaseBNN-DWC
 (directly binarized MobileNetV1,W1A1)

88%-2.5GOP-0.15MB

3×3 
Standard Conv (SC)

3×3 
Depthwise Conv (DWC)

1×1 
Standard Conv (SC)

Basic block in MobileNetV1:
depth-wise separation Conv(DSC)

8×~9× less computation

[4] Howard et al. "Mobilenets: Efficient convolutional neural networks for mobile vision applications." ar**v preprint ar**v:1704.04861, 2017.
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Challenge #2: Increased Model Size

ü More binary standard convolution    BaseBNN-DWC->BaseBNN

BaseBNN
 (ReActNet-adatpted, W1A1)

94.9%-21.2GOP-0.9MB
MobileNetV1

(WFAF)
96%-2.5GOP-

3.3MB

BaseBNN-DWC
 (directly binarized MobileNetV1,W1A1)

88%-2.5GOP-0.15MB
8.5× GOP
6× Param

Depthwise Conv

Standard Conv
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Challenge #2: Increased Model Size

ü More binary standard convolution        BaseBNN-DWC->BaseBNN

ü More complex fractional convolution    BaseBNN->FracBNN[2]

BaseBNN
 (ReActNet-adatpted, W1A1)

94.9%-21.2GOP-0.9MB
MobileNetV1

(WFAF)
96%-2.5GOP-

3.3MB

FracBNN[5]

 (W1A1.4)
95.1%-31.1GOP-0.9MB

BaseBNN-DWC
 (directly binarized MobileNetV1,W1A1)

88%-2.5GOP-0.15MB

 GOP                  Param
8.5× GOP
6× Param

1.5× GOP

[5] Zhang et al.,“Fracbnn: Accurate and fpga-efficient binary neural networks with fractional activations,” FPGA2021 16



Challenge #2: Increased Model Size

ü More binary standard convolution        BaseBNN-DWC->BaseBNN

ü More complex fractional convolution    BaseBNN->FracBNN[2]

ü losing advantage over 4-Bit-Net            BaseBNN->4-Bit-Net

[5] Zhang et al.,“Fracbnn: Accurate and fpga-efficient binary neural networks with fractional activations,” FPGA2021

BaseBNN
 (ReActNet-adatpted, W1A1)

94.9%-21.2GOP-0.9MB
MobileNetV1

(WFAF)
96%-2.5GOP-

3.3MB

FracBNN[5]

 (W1A1.4)
95.1%-31.1GOP-0.9MB

BaseBNN-DWC
 (directly binarized MobileNetV1,W1A1)

88%-2.5GOP-0.15MB

4-Bit-Net
 (lot-bit quantization,W4A4)

95.9%-2.5GOP-0.4MB

 GOP                  Param
8.5× GOP
6× Param

1.5× GOP
8.5× GOP
2.25× Param
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Main Contributions of this paper

Our goal is  to quantify such hardware inefficiency in SOTA BNNs and further 
optimize the BNN hardware performance with negligible accuracy loss

Various Auxiliary Floating-
point(AFP) Components

Challenge #1 Challenge #2 

Increased Model Size

Hardware-Friendly Hybrid BNN  
HyBNN

Solution #2Solution #1

Algorithm/Hardware Component 
Fusion: FuseBNN
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FuseBNN: Algorithm/Hardware Component Fusion

ü Fuse (and retain) all axuliary floating-

point components

ü Light change in AFP shortcut branch

ü Without accuracy loss

SOTA BNN:
BaseBNN Our FuseBNN

Solution to Challenge #1
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Component 

Fusion
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FuseBNN: Algorithm/Hardware Component Fusion

ü Single fused threshold unit

• Pre-computed constant coefficients

• 1 multiplication, 3 additions and 

several logical decision

Solution to Challenge #1

La
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r 
i-

1 
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i 
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FuseBNN: Algorithm/Hardware Component Fusion

ü Single fused threshold unit

• Pre-computed constant coefficients

• 1 multiplication, 3 additions and 

several logical decision

• 5×DSP，20.5×FF, 6.5×LUT reduction

Threshold Unit DSP FF LUT

Before fusion 5 820 517

After fusion 1 40 80

Solution to Challenge #1
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FuseBNN: Algorithm/Hardware Component Fusion

ü Single fused threshold unit

• Pre-computed constant coefficients

• 1 multiplication, 3 additions and 

several logical decision

ü An average reduction of 34% DSPs, 33% 

LUTs and 46% FFs 

Solution to Challenge #1
↓34%

↓33%

↓46%
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HyBNN: Hardware-Friendly Hybrid BNN

ü Directly binarize the DSC blocks  

to keep its compact model size 

for the first time.

ü Use 4-Bit-Net to compensate for 

the accuracy loss

HyBNN

FuseBNN: 94.9%
(21.6GOP-0.9MB)

FuseBNN-DWC: 87.3%
(2.9 GOP-0.22MB)

4-bit-Net: 95.9%
(2.5GOP-0.4MB)

optimize

Solution to Challenge #2
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Experimental Result of HyBNN Accuracy

ü HyBNN with U-D setting

• Trade off between accuacy and resource overhead

• HyBNN-U6D5 (94.8 AP)

Accuracy of different U and D settings for HyBNN on SAR imagery

FP model

4-Bit-Net

FuseBNN-DWC

Final Choice: HyBNN-U6D5

24
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Experimental Result for SAR ship detection

ü FuseBNN+: lower DSP, FF, LUT usage compared to BaseBNN

ü However, increased model size still make FuseBNN lose advantage over 4-Bit-Net

Model AP

(%)

GOP Param

(MB)

Resource Cost Peak 

FPS

FPS

/BRAM

FPS

/DSP

FPS

/kLUTsBRAM DSP FF LUT

BaseBNN 94.9 21.2 0.9 1,032.5
(113.2%)

1,146
(45.5%)

472,534
(86.2%)

399,544
(145.8%) failed - - -

FuseBNN+ 94.9 21.6 0.9 810
(88.8%)

162
(6.4%)

168,688
(30.8%)

122,129
(44.6%) 90 0.11 0.56 0.74

4-Bit-Net
(250MHz)

95.9 2.5 0.4 466
(51.1%)

1,997
(79.2%)

367,112
(67.0%)

192,157
(70.1%) 230 0.49 0.12 1.20

Performance Report  on AMD-Xilinx ZCU102 FPGA with 300MHz (Input size: 416×416)
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Experimental Result for SAR ship detection

ü HyBNN:  higher FPS/BRAM(2.3×), FPS/DSP(3.1×), FPS/kLUTs(3.4×) efficiency  

over 4-Bit-Net

Model AP

(%)

GOP Param

(MB)

Resource Cost Peak 

FPS

FPS

/BRAM

FPS

/DSP

FPS

/kLUTsBRAM DSP FF LUT

BaseBNN 94.9 21.2 0.9 1,032.5
(113.2%)

1,146
(45.5%)

472,534
(86.2%)

399,544
(145.8%) failed - - -

FuseBNN+ 94.9 21.6 0.9 810
(88.8%)

162
(6.4%)

168,688
(30.8%)

122,129
(44.6%) 90 0.11 0.56 0.74

4-Bit-Net
(250MHz)

95.9 2.5 0.4 466
(51.1%)

1,997
(79.2%)

367,112
(67.0%)

192,157
(70.1%) 230 0.49 0.12 1.20

 HyBNN 94.8 2.5 0.19 555
(60.9%)

1,662
(66.0%)

276,583
(50.5%)

152,687
(55.7%) 615 1.11 0.37 4.03

Performance Report  on AMD-Xilinx ZCU102 FPGA with 300MHz (Input size: 416×416)
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Generalization Study for CIFAR10

Model Top-1
(%)

GOP
Param

(MB)

Resource Cost Peak 
FPS

FPS
/BRAM

FPS
/DSP

FPS
/kLUTs

BRAM DSP FF LUT

HyBNN
(300MHz)

89.8 0.03 0.07 94.5
(43.8%)

205
(56.9%)

99,074
(70.2%)

51,927
(73.6%) 4302 45.5 21 82.8

FracBNN[5]

(250MHz)
89.1 0.07 0.03

212
(98.1%)

126
(35%)

39,618
(28.1%)

51,444
(72.9%) 2806 13.2 22.3 54.5

ü GOP reduction (2.3×)

ü HyBNN achieve better accuracy (0.7%), higher higher FPS (1.5×), higher 

FPS/BRAM(3.4×), FPS/kLUTs(1.5×) efficiency  over SOTA FracBNN

Performance Comparision to SOTA FracBNN  on AMD-Xilinx Ultra96-V2

[5] Zhang et al.,“Fracbnn: Accurate and fpga-efficient binary neural networks with fractional activations,” FPGA2021 27



Key Take-Aways

ü A quantitative evaluation of hardware inefficiency caused by AFP components 

and increased model size in SOTA BNNs

ü FuseBNN, a novel algorithm/hardware co-design to fuse AFP operators in BNNs

ü HyBNN, the first hybrid BNN and 4-Bit-Net design that directly binarizes (and 

quantizes) the original DSC blocks

ü Promising experimental results for ship detection on SAR imagery and image 

classification on CIFAR-10 on embeded FPGA

ü Future work: We plan to explore more SOTA BNNs, datasets, and FPGAs.
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HyBNN: Quantifying and Optimizing Hardware Efficiency of Binary Neural Networks, 
Geng Yang, Jie Lei, Zhenman Fang, Yunsong li, Jiaqing Zhang, Weiying Xie

Email: gengyang@stu.xidian.edu.cn
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ü  Early-stage BNN 

•  cheap fusion threshold unit

FuseBNN: Algorithm/Hardware Component Fusion 
early-stage BNN

low accuracy Solution to Challenge #1
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ü  Early-stage BNN 

•  cheap fusion threshold unit

ü  the introduction of floating-point shortcut 

branch break simple fusion strategy
La

ye
r 

i-
1 

La
ye

r 
i 

FuseBNN: Algorithm/Hardware Component Fusion 
early-stage BNN

low accuracy
SOTA BaseBNN
high accuracy

Solution to Challenge #1
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Accuracy (AP), Operation (GOP, giga multiply-accumulate operations, not considering bit-width) 
and parameter size (MB) comparsion for different models. WFAF denotes 32-bit floating-point 

weight and activation

Model Size Analysis 
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Model Configuration 

Ship detection for SAR Imagery Image Classification for CIFAR10
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Experimental Result for CIFAR10
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